Sponsor content

Dual biotherapy may deliver a curative treatment for cancer

BioEclipse (formerly ConcentRx) is preparing to start clinical trials of its novel approach to immuno-oncology, which combines two monotherapies with a synergistic effect.

Upvote 1 Comment

Download the Full PDF

Transformative progress in cancer biology and the role of the immune system has disrupted the field, yet a cure remains elusive because of major problems with existing cancer therapies: cancer cells become resis¬tant to chemical therapies and can evade the immune system, and ultimately the disease recurs. BioEclipse Therapeutics (formerly ConcentRx) is developing a novel, multi-mechanistic approach that circumvents the mechanisms used by tumor cells to evade the patient’s immune system, making resistance less likely and leading to an immune response against multiple tumor antigens that precludes cancer recurrence.

Based in California, USA, BioEclipse is an emerging, clinical-stage biopharmaceutical company com¬mitted to delivering first-in-class curative immuno-oncology therapeutics to patients with cancer. “Even though the words ‘cure’ and ‘cancer’ are rarely used in the same sentence, we can now contemplate a cure,” said Pamela Contag, CEO of BioEclipse. “We have combined two monotherapies that create a syner¬gistic effect, acting together to target and kill cancer cells deep within the tumor, and leading to a durable immune response that enables our bodies to combat new tumor growth.”

BioEclipse recently submitted an investigational new drug (IND) application to the US Food and Drug Administration for its cancer immunotherapy, which is patented by Stanford University, and manufactur¬ing is in place for a phase 1/2 trial.

First-in-class dual biotherapy

The technology is a first-in-class targeted dual biother¬apy comprising immune effector cells that carry a ther¬apeutic payload of oncolytic virus. It utilizes the ability of these immune cells to migrate to tumors and bind directly to cancer cells, thereby facilitating the delivery of a lytic agent (virus) that preferentially replicates in tumor cells, but not in normal cells. Administered sys¬temically, the combination therapy is effective because the replication of the oncolytic virus delivered deep into the tumor can de-bulk large tumors.

Immune effector cells called cytokine-induced killer (CIK) cells are activated in vitro before infec¬tion with an oncolytic virus. The mechanism of action is not major histocompatibility complex (MHC) restricted, so either the patient’s own cells or donor cells can be used. Importantly, unlike immu-notherapy approaches that rely on tumor-specific antigens for cell killing, these effector cells recognize the abnormal tumor vasculature, tumor secreted chemokines and a class of cellular-stress-associated ligands expressed on tumor cells, which offers the potential to treat numerous types of cancer1.

The dual biotherapy relies on a complex set of interactions among immune effector cells, oncolytic virus, tumor cells and the body’s immune response2,3. Cell-mediated delivery of the oncolytic virus serves to protect the viral payload from immune attack after administration. As the virus lies dormant for approximately 48 hours after infection of the effec¬tor cells, the majority of infected cells migrate to the tumor before releasing their payload, which results in greater on-target delivery of the lytic agent. Data from preclinical studies confirm that biodistribution within tumor tissue is enhanced compared with that observed after the administration of virus alone3. 

Figure 1: Image-guided histopathogy. The virus alone does not leave the vasculature, however immune cells are able to deliver the oncolytic virus deep into the tumor. Reprinted from Science 311, 1780–1784 (2006) DOI: 10.1126/science.1121411

Synergistic effect

Once the biotherapy reaches the tumor, it launches an attack on several fronts1–3. Infected effector cells penetrate deep into the tumor and release multiple infectious viral particles in the tumor microenviron¬ment, where they replicate and spread rapidly, pro-ducing a dramatic antitumor effect. At the same time, uninfected effector cells (which are also present in the dual biotherapy) target and kill tumor cells. Viral infec¬tion of the tumor induces a stress response that makes tumor cells more susceptible to effector cell therapy, thus further enhancing the tumor-killing process.

Results from animal models of human cancer show that the dual biotherapy is highly effective, offering a synergistic cancer-killing effect that is more effica¬cious than either therapy alone1,3. For example, a preclinical study using a xenograft mouse model of human ovarian cancer found that survival was 100% at 30 days after treatment with dual biotherapy, com¬pared with 0% at the same time point in either of the two groups treated with a single therapy3. Preclinical models show that the combined therapeutic has a good safety profile with minimal viral infection of normal tissues. Studies of CIK cells in humans and the oncolytic virus used as monotherapies also dem¬onstrate good safety profiles1,4.

Durable immune response

BioEclipse’s approach also has potential for host vaccination in situ, as there is evidence that a strong cytotoxic T lymphocyte response is initiated, which could help maintain the durable immune response observed in preclinical studies2. “First, the dual bio¬therapy is directed at the tumor microenvironment to kill the tumor cells,” said Contag. “Then, a durable cytotoxic T cell immune response develops against specific tumor antigens from the lysed tumor cells.”

BioEclipse’s formulation is broadly applicable for several indications of solid and non-solid tumors. Patients can be treated multiple times for the same or different cancer.

“We have attracted a great team, have a scalable business model, and believe that results from our 2018 phase 1/2 trial will demonstrate that our pre-clinical efficacy can be translated to humans,” said Contag.

Schmidt, T.L., et al. Immunol. Res. 58, 300–306 (2014).

Thorne, S.H. & Contag, C.H. Gene Ther. 15, 753–758 (2008).

Thorne, S.H. et al. Science 311, 1780–1784 (2006).

Zeh, H.J. et al. Mol. Ther. 23, 202–214 (2015). 


Pamela Contag, CEO
BioEclipse Therapeutics
Milpitas, California, USA
Tel: +1-408-809-1015
Email: prcontag@bioeclipse.com 
Website: www.bioeclipse.com

Go to the profile of BioEclipse Therapeutics

BioEclipse Therapeutics

BioEclipse combines the power of an oncolytic virus and the tumor locating ability of the CIK (cytokine induced killer) immune cell to deliver our patented cancer therapy to patients. The BioEclipse combination therapy is designed to address the current limitations of the existing therapies and the unmet needs in recurrent ovarian cancer. Our mission is “To deliver CURATIVE treatment to patients with cancer” by envisioning a cure with the aspiration to be at the forefront of turning cancer into a curable disease. Our immune cells traffick to tumors, through homing and targeting mechanisms, in pre-clinical animal models of disease, suggesting that in addition to the CIK tumor cytotoxicity, these cells could be useful as delivery vehicles for oncolytic viruses to enhance virotherapy. This has been convincingly demonstrated in pre-clinical animal models of ovarian, hepatocellular carcinoma, lymphoma, breast and prostate cancer. BioEclipse filed our IND in September 2017, following a successful response from the FDA on our pre-IND plan. Our business model is to deliver our therapy from BioEclipse to Hospital to Patient using either activated patient immune cells or in a scaled-up model using activated donor cells.

No comments yet.